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RESUMO

Estimação de pose é uma tarefa essencial para sistemas robóticos. Diversos algoritmos
estão disponíveis para solucionar este problema, utilizando sensores como GPS, IMUs ou
odômetros. A odometria visual (OV) é um desses algoritmos, o qual vem demonstrando ser
particularmente vantajoso pois requer apenas um sensor de câmera para efetuar a estimação
de pose. Embora seja semelhante à odometria de rodas, uma vez que ambos estimam a
pose iterando sobre as alterações na leitura de um sensor geradas pelo movimento de um
agente, a odometria visual é resistente a terrenos instáveis e irregulares. Este trabalho
começa analisando as técnicas e os algoritmos necessários para realizar esta tarefa e, em
seguida, propõe uma pipeline de odometria visual stereo para a estimação da pose. O
objetivo é avaliar o quão bem um método utilizando apenas OV consegue realizar a tarefa
de estimar o caminho de um agente em ambientes do mundo real. A implementação
foi estruturada no formato de um projeto de ROS2 para facilitar a integração com
outros sistemas robóticos. Para fazer a avaliação, foi utilizado o conjunto de datasets
do KITTI para odometria visual. Os resultados mostram que o método para OV é
promissor, alcançando um erro médio de aproximadamente 10% do comprimento total da
trajetória na maioria das sequências, embora seja altamente suscetível à acumulação de
erro. Como será discutido, ainda há muito espaço para melhorias e utilização de técnicas
que podem ser combinadas com a OV para reduzir o erro, como o fechamento de loop e
outros algoritmos utilizados no SLAM. O código do projeto é aberto e está disponível em
https://github.com/VRI-UFPR/VRI-stereo-vo.

Palavras-chave: Odometria visual. Estimação de pose. Visão Computacional.

https://github.com/VRI-UFPR/VRI-stereo-vo


ABSTRACT

Pose estimation is an essential task for robotic systems. Multiple algorithms are available
to tackle this problem, using sensors such as GPS, IMUs, or wheel odometers. Visual
Odometry (VO) is one such algorithm that has already been shown to be particularly
advantageous because it requires only a camera sensor to perform pose estimation. While
being similar to wheel odometry, as both methods estimate pose by iterating over the
changes on a sensor readings caused by the agent’s movement, visual odometry is robust
to slippery and uneven terrains. This work first reviews the techniques and algorithms
required to perform this task and then proposes a stereo visual odometry pipeline for
pose estimation. The goal is to evaluate how well a VO only method can perform in the
task of estimating an agent’s path in real world environments. The implementation was
structured in a ROS2 project format to facilitate integration with other robotic systems.
For evaluation, the KITTI odometry benchmark suite was used. The results show the VO
method is promising, achieving an average error of approximately 10% of the length of the
trajectory in most sequences, although high susceptible to drift accumulation. As discussed,
there is still much room for improvement and techniques that can be combined with VO
to reduce drift, such as loop closure and other SLAM-related algorithms. The project is
open-source and available on https://github.com/VRI-UFPR/VRI-stereo-vo.

Keywords: Visual odometry. Pose estimation. Computer vision.
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1 INTRODUCTION

In recent years, due to significant investments in applications such as autonomous vehicles,
domestic assistant robots, industrial robots, and more, the interest in mobile robotics has
grown. On that note, the ability to accurately determine the position and orientation of
these autonomous systems - known as pose estimation — has become crucial, as it is a
foundational task for navigation, obstacle avoidance, and interaction with the environment,
directly impacting their safety and efficiency.

Among the techniques used for pose estimation, visual odometry has emerged as
a particularly advantageous method. It refers to estimating the motion of a camera (or a
camera-equipped agent) by analyzing a sequence of images captured over time. (Nister
et al., 2004) was the first to use this term due to its similarity to wheel odometry, since
both estimate the pose by incrementing the changes on a sensor induced by the motion
of an agent. However, as noted in (Scaramuzza and Fraundorfer, 2011), wheel odometry
is highly affected by wheel slip on uneven terrain. Although visual odometry (VO) is
resistant to these scenarios, it has also been able to provide more accurate trajectory
estimates compared to wheel odometry, with relative position errors ranging from 0.1 to
2%.

1.1 OBJECTIVE

This work first reviews the techniques and algorithms required to perform this task and
then proposes a pure stereo visual odometry pipeline for pose estimation. The goal is to
evaluate how well a VO only method can perform in the task of estimating an agent’s path
in real world environments. For integration with other robotic systems, the implementation
was structured as a ROS2 project. The widely recognized KITTI odometry benchmark
suite, from (Geiger et al., 2012), was used for tests and evaluation. The code is open
source and available on https://github.com/VRI-UFPR/VRI-stereo-vo under
GPL-3 license.

1.2 PAPER STRUCTURE

First, chapter 2 will define the problem and elaborate on the fundamental techniques used
to accomplish this task. The structure and tools of the Robot Operating System (ROS)
meta-operating system will be briefly introduced as well. Chapter 3 explores some early
work on visual odometry and the state-of-the-art for both VO and visual Simultaneous
Localization and Mapping (SLAM). Chapter 4 presents the proposed visual odometry
pipeline implementation in detail, while 5 will discuss the experiments performed on the
KITTI dataset. Finally, 6 summarizes and provides a few potential improvements to the
pipeline, which can be achieved in future work.

https://github.com/VRI-UFPR/VRI-stereo-vo
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2 BACKGROUND

The next sections will present a few essential concepts for visual odometry, such as the
pinhole camera model and the basis of epipolar geometry. A formalization of the problem
will be presented as well, and subdivided into four core algorithms: feature extraction,
feature matching, depth estimation and motion estimation. Lastly, a brief introduction to
the ROS meta-operating system and the context of usage in the project was also included.

2.1 PINHOLE CAMERA MODEL

Before approaching the topic of visual odometry, it is necessary to lay down a few concepts
regarding the camera model, as they provide most of the foundation for the algorithms
described in the following sections. The pinhole was one of the earliest mathematical
representations of a camera, and it is illustrated by Figure 2.1.

Figure 2.1: A visualization of the pinhole camera model and their respective parameters. A transfor-
mation from a 3D object point P to it pixel coordinates (u, v) is represented as well. Source: OpenCV
documentation (Bradski, 2000)

Most of the definitions and equations related to this model were compiled by
(Bradski, 2000), in the OpenCV library documentation. First of all, the projection equation,
which maps a point from the real world to pixel coordinates, is defined as:

s

u
v
1

 =

fx 0 cx

0 fy cy

0 0 1


Xc

Yc

Zc

 (2.1)

Where u, v are the pixel coordinates of a point in the image, s is the depth scale,
which is lost during the 3D to 2D transformation, and Xc, Yc, Zc are the 3D coordinates
of this point relative to the camera frame. From the camera matrix K: cx, cy are the
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coordinates of the optical center and fx, fy is the focal length, both in pixel units. If the
pixel aspect ratio is 1:1, then f = fx = fy.

Since real world lenses are not ideal, the projection to pixel coordinates will always
include a certain distortion. A model to describe this distortion has also been proposed,
dividing it into a radial and tangential component. Equation 2.1 is then rewritten as:[

u
v

]
=
[
fxx′′ + cx

fyy′′ + cy

]
(2.2)

Where x′′, y′′ terms represent the distortion, and are modeled as:
[
x′′

y′′

]
=
x′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + 2p1x
′y′ + p2(r2 + 2x′2)

y′ 1+k1r2+k2r4+k3r6

1+k4r2+k5r4+k6r6 + p1(r2 + 2y′2) + 2p2x
′y′

 (2.3)

with:

r2 = x′2 + y′2[
x′

y′

]
=
[
Xc/Zc

Yc/Zc

]
,

(2.4)

The radial distortion of the lenses is represented by the coefficients k1, k2, k3, k4, k5
and the tangential distortion by k6, p1, p2. Some higher order coefficients, such as thin
prim distortion, were omitted from 2.3, as they have minimal effect on the projection.
Furthermore, the most common types of radial and tangential distortions can be modeled
with high accuracy by only five coefficients: k1, k2, p1, p2, k3.

The Zhang’s camera calibration algorithm (Zhang, 2000) is a popular method to
find an estimation for those parameters by observing a planar pattern with at least two
orientations, typically a checkerboard. The coefficients can be used to perform a process
of image rectification, where the original pixels coordinates are re-mapped to produce an
image captured with nearly ideal lens, allowing the use of the original projection equation
2.1.

This method also estimates the camera matrix K and, combining with the
distortion coefficients - also known as the distortion vector D - provides the so-called
camera intrinsics parameters.

Referring back to 2.1 and considering now an ideal - or calibrated - camera, the
formula to retrieve the Xc and Yc object coordinates can be derived. Supposing Zc is
known:

Xc =
(

u − cx

f

)
× Zc (2.5)

and

Yc =
(

v − cy

f

)
× Zc (2.6)

These concepts will be useful later on when combined to a stereo depth estimator
to find Zc.

Finally, consider the matrix Tw,c ∈ R4×4, which describes the transformation from
the camera to the world coordinate frame. In other words, the camera extrinsics:
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
Xw

Yw

Zw

1

 = Tw,c


Xc

Yc

Zc

1

 (2.7)

combining with 2.1:

u
v
1

 = KΠTk,c


Xc

Yc

Zc

1

 (2.8)

where Π is the projection model to convert to homogenous coordinates. Expanding
each term:

u
v
1

 =

fx 0 cx

0 fy cy

0 0 1


1 0 0 0
0 1 0 0
0 0 1 0



r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



Xw

Yw

Zw

1

 (2.9)

which is the full projection matrix to map an object point in real-world coordinates
- such as meters - to a camera pixel coordinate.

2.2 VISUAL ODOMETRY

(Nister et al., 2004) first described it as a motion estimation system that uses a video feed
from a moving camera alone as an input, operating in real-time with low latency and no
prior knowledge of the scene.

(Scaramuzza and Fraundorfer, 2011) later formulates the problem as, given a set
of images I0:n = {I0, . . . , In} taken by a moving agent with a camera system every k time
instants, the rigid body transformation Tk,k−1 ∈ R4×4 relates two camera poses at instants
k and k − 1 on the form:

Tk,k−1 =
[
Rk,k−1 tk,k−1

0 1

]
(2.10)

where Tk,k−1 is composed by the rotation matrix Rk,k−1 ∈ SO(3) and the translation vector
tk,k−1 ∈ R3×1.

A pose is a combination of an agent’s position and orientation in space with
respect to a coordinate frame. In other words, how far away and in what direction is the
agent pointing relative to an initial location. The agents path can be represented by a set
of consecutive poses.

There are a few different ways to represent a pose depending on the application,
but the transformation matrix will be used in this case, due to simplicity. Considering
C0 the camera pose - in the format of a homogeneous transformation matrix - at instant
k = 0, then Cn = Cn−1Tn,n−1 is the camera pose at instant k = n relative to C0. The VO
problem is to estimate the path C0:n = {C0, . . . , Cn} of an agent with a camera system.

The core components of the algorithm consist of a feature detector that finds
notable points in an image (for instance, corners), a feature matcher that can match these



15

features between consecutive pairs of images, and a motion estimator that computes the
transformation Tk,k−1 between each pair.

2.2.1 Feature detection

(Scaramuzza and Fraundorfer, 2011) divides VO-related works into two categories:
appearance-based, which uses the information from all pixels on the image, and feature-
based, which uses only notable keypoints. The original work from (Nister et al., 2004)
utilizes the latter. Specifically, the Harris corner detector described on (Harris and
Stephens, 1988) due to being resistant to small image distortions. The current work will
also focus solely on feature-based methods.

(Fraundorfer and Scaramuzza, 2012) a describes a feature as a pattern on an
image that differentiates from its neighbors in intensity, color, and texture. Most VO
algorithms focus on point detectors since their position can be measured with a higher
accuracy. Points are features that can be described as either a corner - an intersection
between two edges, where an edge is a change in image brightness - or a blob - a pattern
with a distinct texture that is neither an edge nor a corner.

Most feature detection algorithms consist of two steps, applying a feature response
function on the entire image (corner response on the Harris detector, for instance) followed
by a non-maximum suppression to filter the outliers from the first step. To ensure scale
invariance, the first step is applied to both down and up scaled versions of the image, and
features that consistently appear across different scales are selected.

After detection, it is necessary to represent the feature with a descriptor that is
compact and able to be effectively matched with others. (Fraundorfer and Scaramuzza,
2012) states that the appearance - the intensity of the nearby pixels - is often not a good
descriptor, as it is not invariant to changes in orientation, scale, and viewpoint. The
scale-invariant feature transform, SIFT, represents the features by dividing the area around
it into patches and calculating the local histogram of oriented gradients, which is then
concatenated and represented by a vector of 128 elements.

Each feature detection algorithm has advantages under different environments
and computational constraints. Two algorithms in particular were evaluated on this work,
SIFT and ORB, which will be described in details on chapter 4.

2.2.2 Feature matching

The next step consists of matching the features found between two consecutive frames.
Typically, this matching follows a distance metric determined by the feature descriptor.
(Bradski, 2000) recommends using L2 norm for descriptors similar to SIFT and the
Hamming distance for binary string-based descriptors such as ORB.

A straightforward approach to this problem is to compare each feature in the
image Ik−1 with all features in the image Ik and select the closest match. To reduce the
search space, constraints can be applied, such as a disparity value, which restricts potential
matches to those within a certain pixel distance from the feature in the first image. (Nister
et al., 2004) applies this method with a disparity set at 10% of the original image size,
although this value may vary depending on the agent’s speed and the smoothness of the
input stream. To improve the quality of the matches, the author also applies the mutual
consistency check by matching features from Ik to Ik−1 and only accepting matches that
mutually have each other as their closest.
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2.2.3 Motion estimation

Considering two images of a same feature point X taken by cameras at different poses,
p̃ = [ũ, ṽ, 1] are the pixel coordinates of the feature in image Ik, and p is the corresponding
point on image Ik−1. The epipolar constraint defines the line where p̃ lies in image Ik. For
a calibrated camera, this relationship can be expressed as:

p̃T Ep = 0 (2.11)
where E is known as the essential matrix. This matrix is obtained by multiplying

the 3x3 rotation matrix R with the skew-symetric representation [t]× of the 3x1 translation
vector from the camera center Ck to Ck−1:

E = R[t]× (2.12)
Figure 2.2 illustrates this concept. An epipolar plane is defined by at least the

camera centers Ck, Ck−1 along with one of the feature points. The epipolar lines are drawn
where this plane intersects the image frames.

Figure 2.2: Illustration of the epipolar constraint. The feature point X, its pixels coordinates on each
image p̃, p and camera centers Ck, Ck−1 are all inside the epipolar plane. Source: (Scaramuzza and
Fraundorfer, 2011)

In other words, estimating the motion between the two frames requires finding
the essential matrix. (Nister, 2004) suggests an implementation of a 5-point algorithm,
as a more efficient alternative to the classical Longuet-Higgins’ 8-point algorithm. In the
same work, Nister also introduces a decomposition of E into the R and a displacement
vector b using the triangulation of a single point. It’s important to note that the vector b
does not directly represent the camera’s translation motion, as the scale is not a constraint
of the essential matrix. Thus, the movement cannot be expressed with real world units -
usually in meters. The next sections will elaborate on how it can be recovered, typically
through triangulation of a few points, either within a single video stream a stereo setup.

(Scaramuzza and Fraundorfer, 2011) summarizes this process, known as 2D-to-2D
motion from image, in the following algorithm:
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Algorithm 1 VO from 2D-to-2D correspondences
1: Set initial C0
2: for all new frame Ik do
3: Extract matches between Ik and Ik−1
4: Compute essential matrix Ek for image pair Ik, Ik−1
5: Decompose Ek into Rk and bk

6: Compute relative scale sk

7: tk := skbk

8: Ck := Ck−1Tk

9: end for

2.2.4 Recovering the scale

A stereo setup consists of a pair of cameras with similar intrinsics, mounted parallel to each
other, and within a known baseline distance. The scale can be recovered by triangulating
pairs of features that are visible on both images of the stereo pair. Although this process
can also be performed using consecutive frames, requiring only a single camera, it’s not as
efficient and will not be the focus of this work.

Referring back to the projection equation 2.1, the scale this process aims to
recovery is the term s, which is usually implied by the coordinate Zc. To estimate Zc,
consider a pair of images Il on the left and Ir on the right, taken by a stereo setup of two
similar cameras - with the same focal length. The disparity D of a point is defined by:

D = xIl
− xIl

= Bfx

Zc

(2.13)

Where xIl
and xIl

are the distances between the point and their respective optical
centers on each image, B is the baseline of the stereo setup and fx the focal length. This
relation is illustrated in Figure 2.3.

In this scenario, the disparity can be estimated using a stereo correspondence
algorithm. A classical example is the block matching algorithm, which works by dividing
the image into patches and, along an epipolar line, searching for the corresponding area
in the stereo pair using a similarity score such as the sum of absolute differences (SAD).
This concept is visually represented in Figure 2.4, where the patches are searched within
D pixels of their corresponding coordinates on the right image.

Semi-global block matching (SGM) was later introduced by (Hirschmuller, 2008)
and became one of the widely used stereo correspondence algorithms for disparity estimation.
It performs the search by optimizing a cost function pathwise in all directions on the
image. According to the author, although it is more costly computationally, the disparity
map estimated is more accurate when compared to the BM.

Finally, with a known disparity D, the Zc in world coordinates is calculated with:

Zc = Bfx

D
(2.14)

The remaining two coordinates Xc, Yc are calculated respectively from 2.5 and
2.6. With the 3D object points, the motion can be estimated with the depth included as a
constraint.

Although 3D-3D estimation is possible, and (Scaramuzza and Fraundorfer, 2011)
presents an algorithm for this problem, the camera projection properties can be used to
perform a more efficient 3D-2D estimation with the Perspective-n-points (PnP) algorithm.
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Figure 2.3: Illustration of the correlation between depth and disparity on a stereo setup. In world
coordinats, O, O′ are the camera centers and X is the projected point. For pixel coordinates, f is the
focal length and x, x′ are the distance between the points projection and their camera centers. Source:
(Bradski, 2000)

Figure 2.4: Representation of the pixel search in the stereo BM algorithm. The offset D has the lenght of
the baseline of the stereo setup in pixel coordinates. Source: MathWorks documentation

2.2.5 3D-2D motion estimation

This approach has been proved by (Scaramuzza and Fraundorfer, 2011) to be more accurate
and less computationally expensive than a pure 3D-3D method. The former only requires
the reprojection error between the object points and image points to be minimized, while
the latter uses the 3D Euclidian distance between the points, often requiring a least squares
algorithm, such as the Levenberg-Marquard, as a backbone.

Considering the full projection matrix 2.9 - with known camera intrinsics - as
well as a set of 3D object points in world coordinates and their corresponding 2D pixel
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projections, the remaining extrinsics transformation can be estimated by applying the
PnP method. In this case however, the goal is to determine a transformation between two
camera poses. Therefore, instead of using world object points and pixel coordinates from
the same camera, the set of 3D points in the camera frame of Ik−1 and the 2D points from
Ik will be used, resulting in the transformation Tk,k−1.

The general intuition is to find a set of n pairs of 3D-2D points where the
transformation between them minimizes the reprojection error across all pairs. Several
efficient methods exist to determine the transformation matrix from these points, and
this work employs the P3P (Perspective-3-Point) algorithm as described by (Ke and
Roumeliotis, 2017), which requires four pairs of points to recover the transformation.
Usually, the P3P solution is combined with a search algorithm such as the Random Sample
Consensus (RANSAC), which aims to find a set of points close enough to the optimal. If
the camera matrix K is unknown, at least eight pair of points are required. However, in
this case, only four are required, as the camera has already been calibrated.

(Scaramuzza and Fraundorfer, 2011) also presents an algorithm for general 3D-2D
visual odometry, although it only considers the monocular case. Algorithm 2 is adapted
from his to use stereo depth estimation for scale recovery:

Algorithm 2 VO from 3D-to-2D correspondences
1: Set initial C0
2: for all new stereo pair Il,k, Ir,k do
3: Dk = DepthMap(Il,k, Ir,k)
4: Extract matches between Il,k and Il,k−1
5: Convert the keypoints from Il,k to 3D using Dk

6: Compute camera pose Tk,k−1 with PnP from 3D-to-2D matches
7: Ck := Tk,k−1Ck−1
8: end for

2.3 ROBOT OPERATING SYSTEM

According to (Macenski et al., 2022), ROS functions as a meta-operating system for robots,
offering an environment and a comprehensive set of tools that facilitate the development
and integration of robotic applications, such as message exchange between processes,
package management, client-server interfaces, and various other useful abstractions.

A basic ROS system consists of two or more processes, also called nodes, running
independently, which can send the data to a topic via a publisher structure or receive data
from a topic via a subscriber. There’s no limit to the number of publishers, subscribers, or
topics a node can be connected to or the number of nodes in a ROS network. The data
exchanged is structured in ROS messages, similar to C structures or dictionaries. The
ROS library includes message types for simple variables - integer, float, string, booleans,
and arrays - as well as a few composed messages commonly used in robotics, such as Point,
Pose, Twist, Odometry, Image, etc. Figure 2.5 illustrates this abstraction. Each node
within a ROS system can be implemented in a different programming language provided
it supports the ROS library to access the message system abstractions, for example, rclpy
for Python and rclpy for C++.

The primary reason ROS was chosen as a wrapper for this work, was because it
provides an abstraction layer to work with hardware - or sensors and actuators in general -
specifically, the video stream from the cameras. For instance, a camera driver can run
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Figure 2.5: Representation of the ROS message exchanging between nodes. The message is transmitted
from a publisher to its subscribers via a topic. A client-server model node which will answer requests can
be implemented as well. Source: ROS2 documentation (Macenski et al., 2022).

independently from the core VO system as a separate process, or ROS node, while ensuring
compatibility through ROS’s message interface. Additionally, the framework includes the
rosbag tool, which enables recording and playback of messages at the original frequencies,
facilitating the creation and evaluation of datasets and to simulate real time behavior.

In the other way, ROS provides a well-established interface within the robotics
community, allowing seamless communication with other ROS-based applications that
may want to utilize the odometry data from this node as a black-box module.

The inter-process communication interface uses TCP/IP, allowing nodes to be
visible and send messages across different devices in the same local network. This provides
a significant advantage for autonomous systems distributed across various embedded
computers.

Two main iterations of the meta-operating system are currently being maintained:
ROS and ROS2. Each of them are subdivided into versions, known as distros. This work
was implemented using the latter, ROS2, and the Humble Hawksbill distro, one of the
current long-term support (LTS) releases.

2.4 CONCLUSION

This chapter has presented a base algorithm for monocular and stereo visual odometry,
as well as the sub-routines required by them: feature extraction and matching, depth
estimation with block matching, and motion estimation using PnP. An introduction to
the structure and operation of a ROS system was also presented. As indicated previously,
the focus of this work will be stereo visual odometry and 3D-2D pose estimation.

Before entering in details about the implementation, a few visual odometry related
works will be explored in the following chapter.
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3 RELATED WORKS

This chapter first explores one of the classical works which focused on a pure visual
odometry method similar to Nister’s approach. Then, some notable recent works are
described, each of them exploring how VO can be combined with other computer vision
and navigation techniques to further improve accuracy and performance.

3.1 VISUAL ODOMETRY

(Howard, 2008) was one of the first classical works to follow Nister’s approach by presenting
a real-time stereo-visual odometry algorithm for ground robots. The authors tested using
an autonomous four-legged, as well as a steered ground robot, and they were able to keep
the average error around 1 meter throughout a 400-meter trajectory with a nearly pure
VO approach. Figure 3.1 shows the terrain and trajectories obtained. However, it is worth
mentioning that their module required a pre-processing of the rectified frames, depth map,
and correlation instead of estimating these in real time, as accomplished in this work.
They also differ by using a 3D-to-3D motion estimation based on the Levenberg-Marquard
least squares algorithm, which allows running an inlier filtering step using a graph clique
but, as mentioned previously, is more costly to compute and less accurate than 3D-2D
estimation.

Figure 3.1: Tests made with the four-legged robot on (Howard, 2008). The three images at the top show
the scenario mounted for evaluation and the plot contains the paths estimated by the visual odometry.
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3.1.1 State-of-the-art

As a method that only increments estimations over time, a pure visual odometry solution
would be highly susceptible to drift accumulation. Most practical modern solutions employ
techniques such as bundle adjustment, loop closures and also combine different sensors with
the VO estimation - using a Kalman Filter for instance - to reduce the drift. These methods
start to fall under the category of Visual SLAM. Particularly, algorithms that incorporate
the fusion of VO and Inertial Measurement Units (IMUs) can be classified as Visual-Inertial
Odometry (VIO) approaches. The widely used (Qin et al., 2018) VINS-Mono, and the
later extension VINS-Fusion, utilized both techniques mentioned - monocular or stereo
camera with IMU - achieving top-ranked open source algorithm on the (Geiger et al., 2012)
KITTI benchmark suite, with 1.03% of translational error on 2019 (30th lowest, currently
is placed 58th). Figure 3.2 illustrates their pipeline.

Figure 3.2: Block diagram of the full pose estimation pipeline on VINS-MONO (Qin et al., 2018). It’s
possible to see the camera and IMU fusion, as well as the use of visual SLAM techniques.

Other notable open source mentions include the (Campos et al., 2021) ORB3-
SLAM, which introduces VIO with a multi-map system and is the first to perform loop
closure with short, mid, and long-term data association. Aditionaly, the Kimera library
(Rosinol et al., 2020), combines VIO with pose graph estimation and other computer vision
tasks, such as mesh reconstruction and semantic labeling.

A large portion of the current state-of-the-art research focuses on integrating ma-
chine learning methods into the VO pipeline for tasks such as monocular depth estimation
or feature matching between frames. D3VO, from (Yang et al., 2020), trains three deep
neural networks to estimate depth, pose directly from the consecutive frames - without
extracting and matching features - and an uncertainty map, using only a monocular
camera. A diagram of the pipeline and their neural networks is shown in Figure 3.3. The
authors were able to achieve 0.88% translational error on the KITTI benchmark, currently
ranking 43th.
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Figure 3.3: On the right, diagram of the pipeline and neural networks used on D3VO (Yang et al., 2020).
The image on the center is the trajectory estimated on the EuRoC MAV dataset and, on the left, the
depth as well as the uncertainty maps.

One of the main advantages of these methods is the flexibility in adverse scenarios.
(Zhan et al., 2020) states that most geometry-based algorithms, although able to reach a
high accuracy, are designed for specific conditions known beforehand, such as distance,
lighting, and number of features in the environment. They also explore how to properly
integrate deep learning with the classical epipolar geometry methods and propose two
convolutional networks to estimate depth and optical flow - in other words, the motion -
between images.

Figure 3.4: Stereo visual odometry pipeline proposed on SOFT2 (Cvišić et al., 2023). The main novelty
presented by the authors is the bundle adjusted based on epipolar lines.

Finally, the current top algorithm for the KITTI dataset is still a pure geometry-
based, stereo VO method. SOFT2 (Cvišić et al., 2023) reaches 0.53% translational and
0.0009 deg/m rotational errors by exploring epipolar as well as kinematic constraints to
improve stereo depth estimation and bundle adjustment, showing that geometry-based
methods are still worth researching. Their pipeline is illustrated in Figure 3.4.

3.2 CONCLUSION

The first module presented, from (Howard, 2008), focuses primarily on the foundational
visual odometry approach, aligning more closely the implementation proposed in this work.



24

The following authors start to tackle into the area known as visual SLAM. Some examples
include VINS-MONO (Qin et al., 2018) which utilizes sensor fusion and various SLAM
techniques, as well as ORB3-SLAM which tries to further explore loop closures. Deep
learning is also becoming prominent for this area. D3VO (Yang et al., 2020) proposes a
pipeline of neural networks to perform pose estimation from a monocular camera image
stream.

The next chapter will present in detail implementation proposed for a real-time
pure stereo visual odometry pipeline.
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4 PROPOSED IMPLEMENTATION

This chapter presents the implementation of a real-time stereo-visual odometry pipeline for
pose estimation using the aforementioned techniques. As shown in chapter 2, the pipeline
can be separated into three fundamental steps: feature extraction and matching, depth
estimation, and motion estimation. An adjacent ROS node, or rosbag, as a data source,
and a metrics node to compare the estimation with the ground truth are present as well.

The largest portion of the project was written in C++, so OpenCV (Bradski,
2000) was utilized for most image-related operations, and the Eigen library for matrix
arithmetic. The following sections will describe each module in detail. Figure 4.1 presents
a visual representation of the general pipeline architecture as well. Each blue square is
a standalone process, or ROS node, and their ROS topics are represented by the purple
squares. The internal modules and state variables of each node are illustrated, respectively,
in green and orange.

4.1 DATA INPUT

The image source can be either another ROS node that will act as a driver for a camera
device and publish the frames, or a recorded dataset in the format of a rosbag. Each frame
from the stereo pair is received at the main ROS node from a separated Image message
topic.

4.1.1 Stereo pair synchronization

Since the frames are received from separated topics, to ensure that both frames correspond
originally to the same stereo pair, an Approximate Time Synchronizer was used. This
ROS data structure subscribes to two or more topics simultaneously, only accepting a set
of messages if it receives data from all topics and the difference between their timestamps
are within a specified threshold. This value must be smaller than the image period to
avoid mismatching. In this implementation, the synchronizer subscribes to both image
topics and accepts a threshold of 0.02 seconds.

It’s also necessary to provide the calibration data for both cameras in the format
of the camera matrix K, distortion coefficients array D, and the baseline in meters b of
the stereo mounting. After receiving the stereo pair, the pipeline converts the image to
grayscale, rectify them if required, and simultaneously makes an asynchronous call to the
depth and feature modules. Since they do not have any dependencies between each other,
they can run in parallel.

4.2 DEPTH ESTIMATOR

Mostly, this module consists of a wrapper for the stereo-matching functions provided
by OpenCV. It receives a stereo pair as input, processes it using one of the available
algorithms, and returns a disparity map for each pixel in the overlapping area of the
images. The motion estimator will later calculate the actual depth in meters from the
disparity and camera parameters.
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Figure 4.1: General architecture of the proposed visual odometry pipeline. The ROS nodes are represented
in blue, the ROS topics in purple, the internal modules in green and state variables in orange.

As discussed in the chapter 2, Semi-Global Block Matching (SGM) still remains
one of the most accurate algorithms for this task and had the best results in our experiments
with the KITTI dataset (Geiger et al., 2012). The two key parameters are the level of
disparity, which controls within how many pixels the algorithm will search a point from
the left image in the right image, and the pixel block size, which sets the size of the sliding
window used for matching. Considering the image size of 1382x512 from the dataset, the
disparity is set to 96 and the block size to 11. These values were found empirically and
they also must meet certain constraints: the disparity should be divisible by 16, and the
block size must be an odd number. Figure 4.2 displays a disparity map estimated using
SGBM with the parameters described earlier. The purple rectangle on the left has exactly
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the width of the baseline of the camera, representing the area where the algorithm has no
matching information, as it’s outside of the common region of the stereo pair.

Figure 4.2: Right image of a stereo pair extracted from the KITTI dataset (Geiger et al., 2012), and their
respective disparity map estimated using SGBM.

A few other algorithms are also available to test. The aforementioned Block
Matching (BM), as well as its CUDA-based implementation, which presents a significant
speed-up at the cost of accuracy. The module also includes implementations of the Stereo
Belief Propagation (Felzenszwalb and Huttenlocher, 2006) and the Constant Space Belief
Propagation. However, both algorithms are implemented exclusively in CUDA, requiring
a GPU, and, on the hardware used for evaluation, their computation time was too large
(close to 1 second) to be used in real time.

4.3 FEATURE EXTRACTOR AND MATCHER

Both processes of extracting and matching features between consecutive frames are
implemented on this module. The input contains the current frame from the left camera,
along with the previous frame’s descriptors - or none in the case of the first iteration.
The return includes the descriptors of the current frame and an array containing the best
matches found. Both ORB and SIFT algorithms are available in the implementation,
offering a trade-off between speed and accuracy.

4.3.1 Scale-Invariant Feature Transform

The Scale-Invariant Feature Transform (SIFT), described by (Lowe, 2004), identifies
keypoints using a Difference of Gaussians (DoG) approach. First, different magnitudes of
Gaussian blurs are applied to the image and the adjacent ones are subtracted from each
other. The results of these subtractions are stacked on top of each other and features that
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stand out across the three axis - x,y and blur level - are selected. As the name suggests, to
grant scale-invariance this process is repeated across different scales in an image pyramid,
and points that are inconsistent across them are filtered.

Once the keypoints are identified, the area around each one is divided into a
4x4 grid, and further into another 4x4 subdivision. The gradient for each sub-region is
computed and an histogram of these gradients is calculated. Each of the 16 histograms
are then discretized into eight bins of 45° intervals, resulting in a 128-bit descriptor per
keypoint. Gradients rather than, for example, the pixel intensity were chosen because they
offer robustness against changes in illumination, scale and viewpoint.

For matching, a brute-force search can be used. For large enough data, a KD-tree
can offer speed improvements, but, during experiments on KITTI (Geiger et al., 2012),
the performance was very similar or even worse than the brute-force matcher.

4.3.2 Oriented FAST and Rotated BRIEF

This algorithm was first described on (Rublee et al., 2011) as an open-source alternative to
other popular alternatives such as the aforementioned SIFT and SURF. Initially, it detects
key points using the FAST extractor in an image pyramid, to produce features on multiple
scales, and filters the best corners using the Harris measure (Harris and Stephens, 1988).
To grant rotation invariance, it also computes the orientation from the vector between the
centroid of the feature and the patch at the center of the image.

BRIEF is used as an image descriptor, but the matrix containing the binary
values is rotated according to the orientation vector calculated in the previous step. The
angles are discretized, and a lookup table with the corresponding rotation matrices is
implemented to speed up this process.

Since BRIEF is a binary descriptor, the matching between the frame’s feature
points is made using a Locally Sensitive Hashing (LSH) described on (Gionis et al., 2000).
This technique separates the points into buckets and uses a hash function to search the
buckets. Given a point to query, its descriptor is compared to the common signature bits
of each bucket using the Hamming distance as a metric.

To improve accuracy in both cases, the mutual consistency check described on
(Nister et al., 2004) is applied. Additionally, as recommended by (Bradski, 2000), Lowe’s
ratio test is used to reject matches where the distance between the best and second-best
pairs is not sufficiently distinct. For most cases, the recommended value is 0.7, meaning
that the closest match’s distance must be at least 70% of the next closest match. Since
SIFT usually identifies a much larger number of keypoints, this value was lowered to 0.2
when running with this algorithm.

A CUDA implementation of ORB is also available, which can offer an speed-up of
nearly 10x when compared to SIFT. The trade-off is in the number of features, which still
yield low reprojection error, but are much fewer, being occasionally not enough to run the
P3P algorithm for motion estimation. Although the computation time of SIFT slightly
higher than limit of the dataset to keep up with the real time - around 7Hz - it displayed
a better result in general. This might not hold true depending on the camera scene or
with even higher camera frequencies.

Figure 4.3 compares ORB and SIFT feature extractors at different Lowe’s ratio
thresholds. In all three cases, the mutual consistency check was also applied. For matching,
ORB used LSH and SIFT a brute-force matcher. Table 4.1 presents the computation
speed, in milliseconds, of each step for the same three experiments. The Post-Filtering
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step includes both the Lowe’s ratio test and mutual consistence check. The C++, OpenCV
(Bradski, 2000) implementation was used for these tests.

Extraction Matching Post-filtering Total
ORB, 0.7 21 ms 2 ms 1 ms 24 ms
SIFT, 0.7 139 ms 32 ms 8 ms 179 ms
SIFT, 0.2 141 ms 29 ms 1 ms 170 ms

Table 4.1: Comparison between ORB and SIFT computational speeds for feature extraction, matching
and filtering with mutual consistency and Lowe’s test. The first column indicates the algorithm and the
Lowe’s ratio used.

Figure 4.3: Comparison between ORB and SIFT matches number and quality after filtering with mutual
consistency and Lowe’s test. The red text on each image indicates the algorithm, the Lowe’s ratio used
and the number of matches.

4.4 MOTION ESTIMATOR

Using the depth map and equations 2.14, 2.5 and 2.6, the 2D points from Ik−1 can be
projected to their 3D object points at the camera frame coordinates. With this set
of 3D points and their respective 2D matches on Ik, the PnP is used to calculate the
transformation that minimizes the reprojection error.

OpenCV has an implementation of the P3P solver from (Ke and Roumeliotis,
2017) mentioned previously, which already includes a RANSAC filter. The output from
the function is actually the translation, in the same units as the object points, and rotation
vector, composed by the x, y, z Euler angles. This vector can be converted into a rotation
matrix by using the Rodrigues formula:

Considering r = [rx, ry, rz] the rotation vector, we first normalize r with:

θ = norm(r)
r = r/θ

(4.1)

Then, the rotation matrix R is obtained with:
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R = cos(θ)I + (1 − cos(θ))rrT + sin(θ)

 0 −rz ry

rz 0 −rx

−ry rx 0

 (4.2)

Referring back to the original description of the visual odometry problem, the
camera pose Ck = [XCk

, YCk
, ZCk

, 1]T is given by concatenating the previous pose Ck−1
with the estimated homogeneous transformation matrix Tk,k−1. Starting from a known
initial position C0, repeating this process iteratively across all the frames from the camera
feed allows to reconstruct the agent’s path.

After each iteration, the current transformation matrix is converted into a ROS
Odometry message, containing the 3D orientation, position and covariance, and published,
together with the feature and depth maps for debuging. The descriptors and keypoints
of the current frame Ik are stored, and the node waits to receive the next stereo pair to
repeat this process.

4.5 CONCLUSION

The pipeline presented on this chapter can be summarized as: the main ROS node
receives the image stream from the data source and calls the depth and feature modules.
The first estimates the disparity map - with BM or SGBM - and the second performs
feature extraction and matching - with SIFT or ORB. Then, the 2D feature points of the
previous image are transformed to 3D object points using the depth map, and PnP is
applied to calculate the transformation between the cameras. This transformation is then
concatenated with the previous one and the final pose is derived and published as a ROS
Odometry message.

Using this implementation, the experiments and results obtained on the KITTI
dataset (Geiger et al., 2012), will be presented on the following chapter.
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5 EXPERIMENTS

The primary datasets used for the experiments were the sequences 00 to 10 of the KITTI
odometry benchmark suite from (Geiger et al., 2012). The authors initial goal was to
create a challenging benchmark that could simulate real world environments for computer
vision tasks such as stereo, optical flow, visual odometry, visual SLAM and 3D object
detection. Figure 5.1 shows a top view of their recording platform, equipped with high
resolution stereo cameras, a laser scanner and a GPS/IMU positioning system. The data
were captured on the city of Karlsruhe, Germany, and includes mid-size residential areas,
rural areas and highway scenes.

For visual odometry evaluation, 21 sequences containing RGB and grayscale
stereo pairs are provided. Ground truth transformation matrices are available for the
first eleven, which are meant to be used for training. The remaining ten are intended for
evaluation and are the benchmark the authors use on their official ranking, available on
https://www.cvlibs.net/datasets/kitti/eval_odometry.php.

Figure 5.1: Top view of the dimensions and positioning of the sensor setup used on a car to capture the
KITTI dataset. Source: (Geiger et al., 2012).

The authors also provide the camera parameters and extrinsics of the mounting,
where it is possible to extract the exact baseline of the stereo cameras, as shown in
Equation 5.1. The distortion coefficients are not necessary, since the dataset images are
rectified.

baseline = 0.537

K =

718.856 0.0 607.1928
0.0 718.856 185.2157
0.0 0.0 1

 (5.1)

(Zhan et al., 2020) developed and made available a toolbox to evaluate a VO
pipeline in the KITTI sequences using two key metrics:

• Absolute Trajectory Error (ATE) evaluates the global consistency of the
trajectory by comparing each estimated trajectory point with its ground truth.

https://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Considering pk = [xk, yk, zk] is the ground truth position and p̂k is the estimated
position, ATE can be calculated using the root-mean-squared error (RMSE):

ATERMSE =

√√√√ 1
N

N∑
k=0

∥pk − p̂k∥2 (5.2)

• Relative Position Error (RPE) evaluates the local consistency of the estimation
by comparing the difference between consecutive estimated poses with the ground
truth. Considering tk,k+1 the translation from position k to k + 1, RPE can be
calculated by:

RPEtrans,RMSE =

√√√√ 1
N

N∑
k=0

∥tk,k+1 − t̂k,k+1∥2 (5.3)

And, considering Rk,k+1 the rotation matrix from k to k + 1, the RPE for the
orientation can be calculated by:

RPErot,RMSE =

√√√√√ 1
N

N∑
k=0

arccos2

trace(Rk,k+1R̂⊤
k,k+1) − 1

2

 (5.4)

To simulate a real-time environment, a rosbag was used to replay the dataset at
its original frequency - 10hz. If a new frame arrived while the pipeline was still processing
the previous pose, the new frame was dropped. Besides, only the video streams from
Cam 0 (gray) and Cam 1 (gray) were used as input to the pipeline. The parameters are
summarized in Table 5.1.

Depth algorithm Stereo SGM
Number of disparities 96
Block size 11
Feature extractor SIFT
Feature matcher Brute force matcher
Lowe’s distance ratio 0.3
PnP method P3P
PnP iterations 200
Reprojection threshold 8

Table 5.1: Parameters for the visual odometry pipeline used on the KITTI dataset tests.

5.1 RESULTS

A CPU with 6 cores and 2.9 GHz was used to run the experiments. The results, evaluated
using the metrics described above, are shown in Table 5.2. The path length and the error
percentage - ATE over the path length - were also calculated.
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Path Lenght (m) ATE (m) RPE (m) RPE (deg) ATE (%)
00 4000 156.89 9.79 1.53 3.92
01 2500 1181.69 364.45 17.74 47.26
02 5500 363.90 21.75 1.06 6.61
03 635 101.60 1.37 0.48 16.0
04 395 96.59 2.01 0.29 24.45
05 2340 127.58 1.47 0.55 5.45
06 1260 119.68 3.95 0.42 9.49
07 755 92.97 8.86 4.19 12.31
08 3435 320.14 1.05 0.47 9.31
09 1845 184.41 2.20 0.65 9.99
10 1040 131.69 5.69 8.96 12.66

Table 5.2: Average errors in the first eleven sequences of the KITTI dataset. The path length and ATE
percentage were also calculated and included for comparison.

The average percentage error across all sequences was 14.31%. Excluding sequence
01, which represents a more challenging dataset, as will be demonstrated in the subsequent
sections, the average error decreases to 10.91%. The execution time of each module
was also measured and is present in Table 5.3. Since depth and feature modules run in
parallel and the motion estimation takes less than 2 milliseconds on average, the total
pose estimation time is primarily bounded by the most time-consuming operation, in this
case, the feature matching process.

Depth Estm. Feature Match. Total Pose Estm.
00 41 126 127
01 40 92 94
02 40 160 161
03 40 161 163
04 38 134 136
05 39 130 132
06 39 124 127
07 38 129 130
08 40 146 148
09 39 135 137
10 39 138 139

Table 5.3: Average computation time for the feature matching, deep estimation and the total pose
estimation. Both depth and feature modules run in parallel.

Considering the average estimation time is 140 milliseconds, the pipeline can run
at around 7hz. In other words, 3 out of 10 frames per second were dropped on average.

A common behavior observed across all datasets, and in pure odometry systems
in general, is the drift over time of the estimated position, relative to the ground truth.
This is caused accumulating smaller errors from each step, such as mismatches of a few
pixels on the reprojection matrix. Using the result from sequence 00 as an example, Figure
5.2 illustrates the estimated path compared to the ground truth.

Initially, the general shape of the paths matches, with significant overlap near
the start of the track. By the end, the estimation has accumulated nearly 100 meters of



34

200 100 0 100 200 300 400
x (m)

0

100

200

300

400

500

z (
m

)

Ground Truth
Ours

Figure 5.2: Comparison between the estimated path and the ground truth on sequence 00 of KITTI
odometry dataset. Close to the third turn, the drift accumulation becomes visible and the error starts to
increase until around 100 meters.

drift. Despite this, the RPE remains low, indicating good local consistency of the poses
compared to the ground truth. Sequence 08, shown in Figure 5.3, presents a more extreme
example of this behavior, where the final pose diverged around 300 meters from the ground
truth.
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Figure 5.3: Comparison between the estimated path and the ground truth on sequence 08 of KITTI
odometry dataset. The drift accumulation is more severe on this dataset, and reaches about 350 meters
at the end.

One potential solution to mitigate drift accumulation is loop closure, a common
technique in SLAM algorithms. The loop closure process identifies previously visited areas
and realigns past poses to ensure consistency when revisiting those positions. Most of
the sequences from KITTI include loop closures by overlapping the start and endpoints.
Particularly, sequences 00, 02, 05, and 08 have multiple spots revisited along their tracks,
making it possible to improve significantly the results through this technique.
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Figure 5.4: Comparison between the estimated path and the ground truth on sequence 02 of KITTI
odometry dataset. The first half of the track is composed by a forest area with poor features, which
degrades the pose estimation.
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Figure 5.5: Comparison between the estimated path and the ground truth on sequence 05 of KITTI
odometry dataset. Until the last large curve, the estimated path is able to stay fairly close to the ground
truth.

Another scenario where the algorithm does not present a good result is in environ-
ments with few distinguishable features. Sequence 01 - Figure 5.6 - primarily consists of a
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highway with feature-poor scenes, despite having a relatively simple trajectory. Figure 5.7
shows that the number of matches is small, and they are also concentrated around the
line between the road and the horizon. The features must be well-distributed across the
image to recover an accurate pose.
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Figure 5.6: Comparison between the estimated path and the ground truth on sequence 01 of KITTI
odometry dataset. The open highway area affects both the feature matching and depth estimation.

Figure 5.7: Feature matching between two consecutive frames extracted from sequence 01 of KITTI
odometry dataset. The low number of feature and bad distribution across the image degrades the
transformation recovery.

Furthermore, the open space also negatively affects performance. As noted in
(Scaramuzza and Fraundorfer, 2011), stereo visual odometry methods degrade when the
scene depth significantly exceeds the camera baseline. This issue can be seen in Figure
5.8, where the upper half of the depth estimation - the sky - contains a significant amount
of noise.
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Figure 5.8: Depth estimation on a stereo pair extracted from sequence 01 of KITTI odometry dataset.
The upper half of the image is mostly composed by the sky, where the lack of textures and distance
decrease the accuracy of the depth estimation.

The sequences with results that match more closely the ground truth are 10 and
09, shown in Figures 5.9 and 5.10, respectively. These datasets feature relatively simple
trajectories in urban areas.
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Figure 5.9: Comparison between the estimated path and the ground truth on sequence 10 of KITTI
odometry dataset. The error remains fairly low during most of the trajectory.
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Figure 5.10: Comparison between the estimated path and the ground truth on sequence 09 of KITTI
odometry dataset. Although the drift at the start propagates for most of the trajectory, the general shape
still matches the ground truth.

In sequence 07 (Figure 5.11), the trajectory’s general shape is preserved, but a
drift of about 50 meters near the start propagates throughout the path estimation.
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Figure 5.11: Comparison between the estimated path and the ground truth on sequence 07 of KITTI
odometry dataset. Similar to sequence 09, the general shape still matches the ground truth.
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Figure 5.12: Comparison between the estimated path and the ground truth on sequence 03 of KITTI
odometry dataset. The drift at the end is mostly due to entering a forest area with poor feature matching.

Conversely, sequence 03 (Figure 5.12) starts with low error, but the error increases
toward the end, as the trajectory enters a forested area. Trees often do not produce good
matches due to the similar patterns on the leaves, as shown in Figure 5.13. Most of the
poor matches are filtered by Lowe’s ratio test, leaving only a few valid matches. A similar
issue is observed in sequence 02 (Figure 5.4), where, near 200 meters, the estimation drifts
significantly.

Figure 5.13: Lack of good features on a forest area caused by the similar textures of the trees. The pair of
consecutive images was extracted from the start of KITTI dataset’s sequence 02.

5.2 CONCLUSION

The experiments with the KITTI dataset (Geiger et al., 2012) have shown that the pipeline
can achieve promising results, but there still a large room for improvement. Although the
effect of the drift accumulation is visible, the RPE was low and the ATE was still within
10% of the trajectory length in most sequences. The general shape of the estimated path
was similar to the ground truth as well. As discussed in each sequence, accuracy can be
increased by further optimizing the pipeline - to match the real-time frequency - as well
as integrating SLAM algorithms, such as loop closure, and researching ways to refine the
feature matching in adverse scenarios.
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6 CONCLUSION

Most modern autonomous robots are already equipped with a navigation system and SLAM-
related algorithms. Visual odometry is one such algorithm, enabling pose estimations using
only a camera feed. First, this work has presented a literature review of the foundational
concepts necessary for VO, including the mathematical model of a pinhole camera, core
principles of epipolar geometry, feature extraction, feature matching techniques, depth
estimation, and a PnP-based method for pose estimation. Based on these techniques, a
ROS-based C++ implementation of a real time stereo VO pipeline was developed and
evaluated using the widely recognized KITTI odometry benchmark suite (Geiger et al.,
2012), achieving an average error of approximately 10% of the trajectory length across
most sequences.

As shown by the results, there is still significant room for improvement. It is
visible that one of the main concerns is the drift accumulation over time. Future work could
explore integrating visual SLAM techniques, such as loop closure and pose optimization
through bundle adjustment, as well as other algorithms mentioned on (Scaramuzza and
Fraundorfer, 2011), to improve performance.

Besides, experimenting with different feature extraction algorithms could help
achieve a better balance between accuracy and computational speed, directly reducing the
total estimation time. Deep learning research is also another promising area for visual
odometry as a way to address one of its fundamental weaknesses, which is featureless
scenarios.

Finally, visual-inertial odometry systems have shown great accuracy by fusing
IMU data with the odometry estimations and are another area that can be explored in
the future as well.
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